

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

Goods for European farmers and consumers

Urs Niggli

Table of contents

- > What is the state-of-the-art in literature on the public goods delivered by organic farms?
- > Are ecological advantages of organic farming neutralized by weak yields?
- > Which direction should innovation in organic farming take?
- > How to fill up the gap between organic certification and best organic practice?

References from field research sites references from field research sites

Gattinger et al., 2012 (FiBL) www.pnas.org/cgi/doi/10.1073/pnas.1209429109

The Rodale Institute Farming Systems Trial Pennsylvania, USA

Long-term Agronomic Experiments since 1978 The DOK farming system comparison (CH)

FiBL www.fibl.org

Mäder, Fliessbach,, Niggli (2002), Science 296

Frick soil tillage field experiment (since 2002)

Plough vs. reduced tillage system.

Slurry vs. composted manure + slurry top.

+/- biodynamic preparations.

Berner et al., 2008, Soil & Tillage Research

Long-term farming systems comparisons (since 2007)

How certification is <u>supposed</u> to work

Source: Roscher, 2007 <u>http://www.wwf.de/fileadmin/fm-wwf/pdf_neu/Bella_Roscher_WWF_Sojaseminar.pdf</u> [Retrieved: 15.10.2010]

Also a question of individual commitment

Organic farmers in Switzerland have higher proportions of semi-natural land, land for ecological compensation or set-aside land than conventional farms (dataset: 60'000 farms = 100%)

Schader C., Pfiffner L., Schlatter C., Stolze M. (2008). **Agrarforschung** 15(10), 506-511

Biodiversity on organic farms* (global literature review of comparison studies)

Taxon	Positive	Negative	No difference	
Birds	7		2	
Mammals	2		5	The second
Butterflies	1		1	
Spiders	7		3	
Earthworms	7	2	4	
Beetles	13	5	3	1 tel
Other arthropods	7	1	2	
Plants	13		2	
Soil microbes	9		8	A State States
Total	66	8	25	2

* Scales: Plots, fields, farms, landscape

Hole *et al.,* 2005. Biological Conservation 122, 113-130

Meta-analyses of 74 field trials world-wide: <u>sequestration rate (Mg ha⁻¹ year⁻¹) and C stocks</u>

Gattinger et al., 2012 (FiBL) www.pnas.org/cgi/doi/10.1073/pnas.1209429109

Less N₂O from organically managed soils

N ₂ O emissions per acreage (kg N ₂ O-N ha ⁻¹ a ⁻¹)				GWP ^d N₂O	GWP ^d N ₂ O emissions per acreage (kg CO ₂ -eq. ha ⁻¹ a ⁻¹)					
land-use	MD*	CI	P	studies	comp. °	MD*	CI	Р	studies	comp. °
all (annual) ^f	-1.04	0.41	0.00	12	70	-486	191	0.00	12	70
arable	-1.01	0.42	0.00	11	67	-472	195	0.00	11	67
grassland	-2.42	5.16	0.36	2	3	-1133	2416	0.36	2	3
rice-paddies	-1.39	2.22	0.22	1	3	-650	1038	0.22	1	3
overall ^o	-1.03	0.32	0.00	18	98	-482	150	0.00	18	98

Mean difference for all studies 0.5 t ha⁻¹ yr⁻¹ less CO_2 eq. as nitrous oxide.

Cut-off point: - 17 % yields

Soil properties in the DOC experiment (year 24)

Mäder, Fliessbach, Niggli (2002), Science 296

Organic = good adaptation to climate change due to higher soil carbon levels

- Increased aggregate stability (Gerhardt, 1997; Siegrist et al., > 1998; Brown et al., 2000; Mäder et al., 2002; Pulleman et al., 2003; Williams & Petticrew, 2009).
- > Increased water holding capacity, higher water content in soil (Brown et al., 2000; Lotter et al., 2003; Pimentel et al., 2005)
- Improved infiltration rate of water > (Lotter et al., 2003; Pimentel et al., 2005; Zeiger & Fohrer, 2009).

DOK/Conventional: mineral fertiliser:

DOK/Biodynamic with composted manure:

Yields: state-of-the-art of literature

- Temperate zones: The ratio between organic and conventional yields (intensive farms) is between 0.75 and 0.8.
 - Seufert, V.; N. Ramankutty and J.A. Foley 2012: Comparing the yields of organic and conventional agriculture. Nature 485, 229-232. doi:10.1038/ nature11069.
 - De Ponti, T.; B. Rijk and M.K. van Ittersum 2012: The crop yield gap between organic and conventional agriculture. Agricultural Systems 108, pages 1-9. Elsevier.
- Proof of concept: The DOK trial running in permanence in Switzerland since 1977: Ratio of yields of several seven year crop rotations: 0.83 organic/conventional.
 - > Mäder, P.; A. Fließbach; D. Dubois; L. Gunst; P. Fried and U. Niggli 2002: Soil fertility and biodiversity in organic farming. Science 296, 1694-1697.

Yields: state-of-the-art of literature

- > Sub-Saharan Africa: The ratio between organic and traditional yields is 2.16 in favor of organic.
 - > UNCTAD and UNEP (2008). 'Organic Agriculture and Food Security in Africa', New York, Geneva, United Nations Conference on Trade and Development, United Nations Environment Programme.
- An older meta-analyses of global data: the average yield ratio "organic/conventional" was slightly <1.0 for studies in the developed world and >1.0 for studies in the developing world.
 - Badgley, C., Moghtader, J., Quinterio, E., Zakem, E., Chappell, M.J., Avilés-Vázquez, K., Samulon, A. and Perfecto, I. (2006). 'Organic agriculture and the global food supply'. Renewable Agriculture and Food Systems 22: 2, pp. 86-108.

DOK trial in CH, since 1977: Organic yields 83 %, excellent input/output ratio

	Parameter	Unit	Organic farming	Integrated farming (IP) with FYM	Organic in % of IP
	Nutrient input	kg N _{total} ha ⁻¹ yr ⁻¹	101	157	64 %
ut		kg N _{min} ha ⁻¹ yr ⁻¹	34	112	30 %
dul		kg P ha⁻¹ yr⁻¹	25	40	62 %
		kg K ha ⁻¹ yr ⁻¹	162	254	64 %
	Pesticides applied	kg ha ⁻¹ yr ⁻¹	1.5	42	4 %
	Fuel use	L ha ⁻¹ yr ⁻¹	808	924	87 %
put	Total yield output for 28 years	%	83	100	83 %
Out	Soil microbial biomass as "output"	tons ha ⁻¹	40	24	167 %

Mäder, Fliessbach,..., Niggli (2002), Science 296

Long-term field trial Madhya Pradesh State (Nimar Valley), semi-arid, 800 mm rainfall

Having a clear strategy for innovation

- > We need more innovation, otherwise organic farming will become irrelevant.
- > The approach taken by the organic movement towards innovation is controversial:
 - For some innovations like bio-control, ICT, precision farming, robots, food processing technology, food storage and packaging, food logistic, glasshouse production, a technology-affine approach is taken.

> Whilst in many cases, technology is seen as a diametric opposite to traditional farmer knowledge.

Having a clear strategy for innovation

- > Organic farming should better adopt the full pathway to innovation (and be leading at critically assessing technologies case by case).
- ➤ Hierarchy of innovation to be consequently adopted in organic agriculture: Traditional farmer knowledge → farmer driven innovation (on-farm and action research; social and product innovation) → eco-functional innovation → scientific, technical and technological innovation.

Habitat management in cabbage

Luka, H., Balmer, O., Pfiffner, L., Eggenschwiler, L. & Jacot, K. (2011): Einführung von agronomisch und ökologisch wirkungsvollen Nützlingsblühstreifen in der Kulturlandschaft. Dossier Nützlingsblühstreifen, Forschungsinstitut für biologischen Landbau (FiBL) Frick & Forschungsanstalt Agroscope Reckenholz-Tänikon ART, 20 pp.

Functional diversity

Companion plants increase life span, fecundity and mobility of parasitoids

Iberis amara

Centaurea cyanus

Diadegma semiclausum

Companion plants serve as food sources within the crop to enhance longevity and oviposition of parasitoids

Parasitoids: from 2 day survival in cabbage (mono) to 20 days in cabbage + cornflower

Céline Géneau, 2008

Abundance and biomass of earthworms (g/m²)

Treatment		A 11	Juve	Cocons	
	Weight	Number	Weight	Number	Number
Plough	56.1	156.5	11.2	103.8	21
Reduced	83.3	261.8	18.8	187.0	113
Red/Plough	+48%	+67%	+68%	+80%	+438%

Conclusions

- Overwelming evidence for being good at delivering public goods at a reasonable level of productivity.
- > How to upscale and mainstream organic farming?*
- > Discussion about a clearer strategy towards innovation.
- > Best organic practice will become important.
- * Reasons for niche position:
- Lack of information of consumers?
- Big Business opposed?
- Lack of research (less than 1 % of research spending)?
- Too expensive?
- True cost accounting not applied?

